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Abstract—Radio positioning is critical for many indoor appli-
cations, such as behavioral monitoring and autonomous robots.
Mobile users, however, can also be exposed to surveillance risks
due to this capability. This work presents a Spatial-Temporal
Angle-Delay Analysis Scheme (STADAS) for massive MIMO
wireless networks that can help the attacker to track a user with-
out the need to enter buildings. First, we transform the channel
state information (e.g., angle of arrival, time of arrival) from
massive MIMO transmission gained over time into living Angle-
Delay profiles (ADPs) with fixed objects (building walls, furni-
ture) and a moving object (the mobile user). Second, a generative
adversarial network learning model is used to remove distorted
data points from Angle-Delay video frames. The processed ADPs
are trained with a Deep Convolutional Neural Network (DCNN)-
based model on estimating the user’s location. Evaluations on an
empirical dataset indicate that radio positioning capabilities in
emerging wireless communication technologies such as mmWave
MIMO can pose severe privacy and surveillance threats.

Index Terms—Wireless security, User tracking, Radio-based
Localization.

I. INTRODUCTION

Massive MIMO and directional transmission techniques

are expected to become the dominant antenna design and

data transmission technologies for video and high-bandwidth

applications in 5G wireless networks. By training on beam

signal space and exploiting spatial-temporal signal processing,

massive MIMO enables high-accuracy localization [1], [2].

For example, an accurate location is used in indoor activity

trackers, geofencing for people with dementia, and augmented

reality [2]. The radio positioning feature will be critical in

indoor environments where the Global Positioning System

(GPS) often performs poorly.

However, radio-based positioning technology can be poten-

tially abused for user surveillance. In this work, we develop

an efficient scheme that can track a mobile user accurately,

even without going into the user’s building. The tracking

information can reveal the user’s movement trajectory in a

real-time manner. This raises new concerns about user privacy

risks in one of the most promising antenna technologies. As

illustrated in Figure 1, an attacker may deploy a tracking

device (e.g., fake base station) to infer cellular/WiFi signals

and track the target user in a restricted access building.

Another typical example of harmful tracking is when the

adversary tries to follow the VIP targets (while they are using

their phones).

Fig. 1. The illustration of exploiting signal spatial-temporal signal processing
of directional massive MIMO-based technologies to track a user in a restricted
access building without physically going into.

A. State-of-the-art studies

Indoor tracking has been an important research topic for

years. Currently, the research community is making a lot of

efforts to realize a long-awaited goal of centimeter tracking

accuracy in various environments, e.g., 5G mmWave [2]–[5].

There are five main approaches of indoor tracking algorithms.

The first approach is a set of triangulation and trilateration-

based methods, where uplink and downlink Angle of Arrival

(AoA) or Time Difference of Arrival (TDOA) measurements

are used to estimate the user’s position [1]. However, the

weakness of this technique is at least three base stations must

be available to resolve the user’s relative location. Meanwhile,

its accuracy error can be up to several meters. The second

approach highlights cooperative localization [6] where the

tracking accuracy can be enhanced by exploiting peer-to-peer

feedback among the nearby users for estimating a specific

user’s location [7]. However, it is ideal to assume that the users

are always in communication. Moreover, in dynamic networks,

the topology is constantly changing. Due to this, it is difficult

to establish a stable network state for launching localization.

In the third technique, machine learning is the most common

model to be used. The machine learning-based methods often

exploit the advantage of large-scale training on channel state

information (CSI) fingerprint (e.g., amplitude, angle, Radio

Signal Strength Indicator (RSSI)) datasets to identify the user

location from the ground truth patterns [5], [8]. However,

although this technique can enable high accuracy, the require-
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ments of large-scale fingerprinting datasets can be a challenge

in unknown structures. Further, there is insufficient data to

collect in many cases (e.g., sparse user density). The fourth

type of tracking is multipath-based [1], where AoA/TDoA

values are extracted from multiple path components. However,

this technique’s accuracy significantly degrades when multiple

path sources are detected in close proximity. Finally, many

studies have relied on the hybrid tracking approach, i.g., using

the combination of multiple positioning methods and data

fusion, e.g., Bayesian [7]. In order for a hybrid approach to

achieve high accuracy, a variety of data sources must be used.

B. Contributions

This work presents a novel approach, namely Spatial-

Temporal Angle-Delay Analysis Scheme (STADAS), to

demonstrate high-accuracy indoor tracking. In the first step,

a deep learning model is proposed to run on the Angle-Delay

profiles (ADPs), which are extracted from propagation models

and path loss statistics of well-known material penetration, to

estimate the relative location of a user. The estimations are

then used for trajectory generation with the help of state-of-

the-art video prediction technology. The results demonstrate

that our scheme can yield high-accuracy indoor surveillance

capability, even without physical intrusion into the target

environment.

II. SYSTEM MODEL AND PROBLEM STATEMENT

This work aims to track a specific mobile user in a de-

partment building. We assume that adversaries can deploy

an anchor (truck base station) in known positions to locate

a single user. Suppose that the user’s location is unknown.

The user uses cellular mmWave networks or WiFi mmWave

networks. The antennas of the anchor and the user are Uniform

Linear Array (ULA) type. The anchor and the user have NR

and NT antennas, respectively. The mmWave system uses

orthogonal frequency division multiple access (OFDM) with

K subcarriers.

A. Tracking attack model

In this work, we assume that the attacker can passively

collect the user’s signals by deploying eavesdropping devices

around the building. In wireless networks, this eavesdropping

attack is common and used, especially against directional

wireless communications such as mmWave [9]. The other

way is that the attacker can launch jamming attacks against

genuine base stations. The user is forced to broadcast signals

in order to find the nearby base station (to re-establish the

connection). In this case, the attacker’s tracking device attracts

the user connection and acts as a fake base station. Since radio-

based tracking takes place at the physical layer, tracking is

possible once the transmission and signals exist. Due to this,

the attacker can track the user even if there are errors during

data transmission, such as authentication errors.

B. Signal and communication model

Similar to [8], we adopt a wideband geometric mmWave

MIMO channel with C clusters. Each cluster can constitute

up to L rays/paths between the anchor (receiver) and the user

(transmitter). Then the channel impulse response (CIR) matrix

for each sub-carrier k (k = 1, 2, . . . ,K) at the time t is given

by

h[k](t) =

√

NR

ρpl

C
∑

c=1

L
∑

l=1

αc,la
R
c,l(φ)a

T
c,l(θ)e

−j2π
τc,l

kTs , (1)

where ρpl is the path loss. Ts and τc,l denote the sampling

period and the delay belonging to the lth path of the cth cluster,

αc,l is the complex channel gain [10]. φ and θ denote the

physical angle of arrival (AoA) and angle of departure (AoD)

of each cluster (φ ∈ [π2 ,
3π
2 ] - right unit circle, θ ∈ [ 3π2 , π

2 ]
- left unit circle). aRc,l(φ) denotes the array response vector

at the anchor from the lth path and the cth cluster. aRc,l(φ) is

given by:

aRc,l(φ) =
1√
NR

[

1, ej2πdsin(φ), . . . , ej2π(NR−1)dsin(φ)
]T

,

(2)

where d is the distance between two elements of the anchor

antenna array (as illustrated in Figure 1) in wavelength.

Suppose that the signals penetrate via multiple walls. In this

work, we use the Wall Attenuation Factor model as described

in [11]. Accordingly, the signal path loss ρpl in decibels (dBm)

caused by obstacle attenuation between the transmitter and the

receiver is modeled by

ρpl =

{

ρ(d0fc)− 10nlog(dau

d0 )−W ∗ F if W < M

ρ(d0fc)− 10nlog(dau

d0 )−M ∗ F otherwise,
(3)

where ρ(d0fc) is the signal power at some reference distance

d0 of the carrier frequency fc, e.g., d0 = 1m. n denotes the

path loss exponent that increases with distance. dau is the

Euclidean distance between the anchor and the user. M is the

maximum number of obstructions (walls), a constant. W is the

estimated number of obstructions between the anchor and the

user. F is the wall attenuation factor. Both n and F depend on

the building layout and construction material. The values of

signal loss in several wall materials can be found in [12], [13].

Finally, the general channel impulse response matrix between

the anchor and the user at the time t can be written as follows:

H(t) =
[

h[1](t), . . . , h[k](t), . . . , h[K](t)
]T

, (4)

C. Problem statement

To take advantage of the rich deep learning techniques, we

need to transfer the CIR matrix H into a linear form, the so-

called Angle-Delay profile G. G is estimated by mapping the

space-frequency domain to the angle domain and the delay

domain at the time t as follows:

G(t) = V HH(t)F =
1√
NR

e
−j2π

z(q−
NR
2

)

NR H(t)
1√
K

e
−j2π zq

NR ,

(5)
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where V H (∈ CNR×NR ) and F (∈ CK×K) are two dis-

crete Fourier transform matrices, (z, q) element represents the

complex gain associated with the zth AoA and the qth ToA

[14]. Now the problem of locating the user from the channel

impulse response matrix H is equal to finding the user position

by running deep learning algorithms on Angle-Delay channel

profiles G. In the following section, we present a novel scheme

with two deep-learning models and an averaging function to

enhance user tracking accuracy.

III. PROPOSED SPATIAL-TEMPORAL ANGLE-DELAY

ANALYSIS SCHEME FOR INDOOR TRACKING

This section introduces a novel scheme to enhance angle-

delay-based tracking accuracy by correlating potentially incon-

sistent data points from Fourier transformation and averaging

location estimation results after multiple trials. The proposed

data point correlation and location estimation calibration

mechanism are efficient for enhancing tracking performance,

particularly when the user repeatedly moves on the same route.

A. Building Angle-Delay Data Points profile

The channel state information must be transformed into a

multimedia representation to exploit video prediction tech-

niques. In this work, we use an Angle-Delay profile (ADP).

According to [14], ADP represents the angle of arrivals of

the received signals in terms of the delay with respect to the

arrival paths in multi-path transmission. Also, Angle-Delay

profiles preserve the user’s motion when stacked temporally.

The channel state information is first collected during the

communication period as illustrated in Figure 2a). The infor-

mation is then transformed into corresponding Angle-Delay

profiles through linear Fourier transformation as illustrated

in Figure 2b). Figure 2c) shows the data points of (angle,

delay) information from Angle-Delay profiles over time of

each user (if there are multiple users on the signal map

collection). The time-based data points are combined to build

a video where static objects like building walls are fixed

lines and dynamic objects representing user movements are

dot images as illustrated in Figure 2d). However, the video’s

data points can be distorted due to noise and signal inference.

The following subsection details how we use a state-of-the-art

video frame prediction technique to correlate distorted Angle-

Delay data points.

B. Frame Prediction for Correlating Angle-Delay Data Points

In an environment with many obstacles, e.g., a hotel, signal-

based localization accuracy is negatively impacted by signal

scattering or multi-source overlap. As a result, transformed

angle-delay data points G can be distorted [8]. Several state-

of-the-art deep learning techniques [15] have exploited frame

prediction to correlate ‘”distorted” data points. Assume that we

have a sequence of accurate ADP records collected at the time

t (e.g., after Ts seconds of tracking the user on the building

hall), G(t) = {G(t1), G(t2), . . . , G(tTs
)}. In this work, we

use a Spatial-Temporal Multi-Frequency Analysis Network

(STMFANet) [16] to predict the next frame of the sequence.

Fig. 2. The illustration of cross areas of the moving paths of two users. The
signals of a user can be wrongly labeled to the others at the cross area.

STMFANet is a generative adversarial network where the

Generator and the Discriminator are trained to predict the next

video frames. The loss Lpre of the prediction network consists

of two losses (image domain loss LIMG and adversarial loss

LADV ) as follows:

Lpre = λ1LIMG + λ2LADV

= λ1(

Ts
∑

i=1

||G(ti)− Ĝ(ti)||22 +Ψ)− λ2logD([G(t), (̂G)(t)]),

(6)

where λ1 and λ2 are hyper-parameters to trade-off between

two distinct losses, Ψ is the Gradient Difference Loss [16].

C. Deep CNN-based User Location Estimation on Angle-

Delay Data Points

The final task is to locate the user. We run a Deep CNN-

based User Location Estimation (DCULE) on the ”correlated”

data points. DCULE consists of m CALP modules and soft-

max function. m is a constant, e.g., m = 2. Each CALP

module includes four layers [14]: (1) a convolution operation

layer with NR × K convolutional Kernels; (2) an activation

function layer (e.g., RELU); (3) a local response normalization

layer; (4) a pooling layer. The input for the first layer of CALP

includes correlated data points at the time t. The output after

softmax is the estimated locations of the user at the time t is

x(t) = {x(t1), x(t2), . . . , x(tTs
)}. In other words, x(t) are the

results of running DCULE on Ĝ(t). The final loss of running

DCULE module is bounded by the cross-entropy loss function

as defined as follows:

Lest =
1

D

D
∑

i=1

x
′

(t)log(x(t)), (7)

where x
′

(t) and x(t) denote the probability distribution of

labeled training data (past locations) and the DCNN training’s

output. D is the number of training episodes.
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Fig. 3. The illustration of the proposed indoor positioning workflow.

D. Multiple-round-based User Monitoring and Averaging Lo-

cation Estimation

One of the typical surveillance cases is that the tracker does

not have the drawing of the building or the inside structure.

While revealing the in/out routes and a relative location of the

target objects is still possible, knowing the exact room/place is

complicated. To enhance the results for this blind tracking, the

building architecture for ray tracing can be roughly estimated

by the standard sizes of several structures. However, the

furniture’s effect on signal loss can proportionally impact

the tracking performance. To gain the best results, we can

run N rounds of DCULE-based user tracking with different

locations of the anchor (e.g., the attacker moves around the

building as illustrated in Figure 1) or the cooperation of

several agents. And the target user location x̂(t) is calculated

by averaging the estimated locations of N round trials., i.e.,

x̂(t) = 1
N

∑N

j=1 xj(t). Figure 3 summarize the workflow of

processing steps in the proposed system.

A building drawing, if any, can significantly help refine the

tracking results. Specifically, if there are outlier data points

from the estimated locations (after step 4 in Figure 3), they

can be easily detected by referring to a grid of data points

from the walls and rooms’ coordinates. Without outlier data

points, the estimated locations after averaging (after step 5 in

Figure 3) with knowing the building structure can be more

accurate than those without knowing. Further, the data points

can be checked via ray tracing techniques [2], given the known

geometric structure of the building.

IV. EVALUATION RESULTS AND ANALYSIS

We evaluate the performance of our tracking mechanism

via simulation of indoor “I3” scenario in DeepMIMO dataset

[17]. The dataset is scaled for a 100m×110m×3m building.

Also, as for the propagation model, each channel path can

TABLE I
THE TRAINING HYPERPARAMETERS AND NETWORK CONFIGURATION

Parameter Value Parameter Value

Antenna ULA Carrier frequency 2.4/60GHz
No of episodes D 200 Bandwidth 20MHz
NR/NT 32-128/16-128 No of subcarriers K 32
Learning rate 1-e4 Sampling period 2ns

Activation function ReLU Optimizer Adam

undergo a maximum of 2 reflections and 1 transmission before

reaching the receiver. We also use the path loss and phase

change for RF propagation ray in MATLAB to trace the signals

when the anchor moves around the same building. The user

randomly walks with a maximum speed of 1.3m/s (5km/h).

The sampling period Ts is at 2ns. The operating frequencies

are 2.4 GHz and 60 GHz, as set in the dataset. The anchor (spy

agent) is outside the building to avoid the target’s suspicion

by setting a negative location value. The tracker can move

around the left and the bottom side of the building at a

distance of −20m to −30m. The other parameters for training

hyperparameters and network configuration are summarized

in Table I. We compare the accuracy performance of the

proposed method with three state-of-the-art tracking models

(whose codes are available): (1) DyLoc [8]; (2)LEAP [3]; (3)

DCS-RADAR [5], [18].

At the default configuration (as shown in Table I, NR = 32),

Figure 4(a) shows the cumulative distribution of the esti-

mation errors for four methods. Accordingly, the proposed

method achieves the best performance with 95.6% reliability

in tracking accuracy below one meter. By exploiting the power

of deep recurrent neural networks (e.g., PredRNN), DyLOC

ranks second in tracking performance with 91.3% reliability

for lower-1-meter accuracy. The positive result of the proposed

approach over DyLOC comes from the advantage of the

STMFANet mechanism in overcoming distorted frames. STM-

FANet encourages two competitors in learning (Generator and

Discriminator) that can correlate the distorted data points much

faster than the long-term and hierarchical-memory learning

model did (i.e., PredRNN in DyLOC). Further, in our tracking

scheme, the outlier data points can be mitigated through the

built-in multiple-round-based monitoring and position aver-

aging mechanism, which DyLOC did not support. Lacking

calibration mechanisms for outlier data points also makes

the two remaining methods’ performance ranks last. Besides,

we found that trajectory smoothing via the Kalman filters

in LEAP or Particle Filter in DCS-RADAR performs poorly

if the target user randomly walks or the signals are heavily

distorted (that causes many outlier data points). Finally, due

to exploiting spatial-temporal features, memory-based learning

models like ours and DyLOC can give better overall accuracy

when training on time-series data points than the spatial-based

learning models (LEAP, DCS-RADAR) do.

Our multiple-round-based position monitoring and averag-

ing module are particularly useful when the building structure

is complicated, or the environment is noisy (many thick walls

or furniture exist). For example, as shown in Figure 4(b), by
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Fig. 4. The localization performance comparison of the proposed method
and three state-of-the-art tracking models: a) CDF of the estimation errors;
b) Estimation error over the number of trials.
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Fig. 5. The performance comparison of the proposed method and three
state-of-the-art tracking models in a) Tracking loss over the number of
trials; b) Time overhead with the corresponding number of antenna arrays
configuration;

running multiple trials (three rounds with different locations

of the anchor) and averaging the estimated locations, the pro-

posed method can significantly reduce the location estimation

error to several centimeters. By contrast, without a strong

spatial-temporal outlier data point correlation and multiple-

trial estimation mechanism, the tracking performance of all

three methods (DyLOC, LEAP, DCS-RADAR) remains no

significant enhancement, even after many trials.

In the worst case, there are multiple mobile users in the

building, and the users may cross-walk each other. As shown

in Figure 5(a), the ratio of tracking loss on a specific user

increases for all methods due to the challenge of distinguishing

two too-close signal sources or signal angle overlaps. In

this case, the proposed method shows a slight improvement

with 10% less loss than the other methods. The positive

enhancement comes from the well-correlated data points af-

ter averaging user locations from running 3-rounds of our

algorithm at the different locations of the anchor. However,

due to training on large spatial-temporal data point spaces, as

shown in Figure 5(b), the proposed tracking approach suffers

a little bit more time overhead, i.e., delay in responding to the

localization requests, compared with LEAP and DCS-RADAR

but lower than DyLOC does. The longest time overhead is

when the transmitter (user) uses a device with large antennas

that accidentally creates many ADP inputs for STMFANet and

DCULE training. DyLOC suffers the longest time overhead

due to the higher computation expenditure of the PredRNN-

based learning model in DyLOC over the STMFANet-based

TABLE II
AVERAGE RMSE COMPARISON OF THE TECHNIQUES WITH A SENSITIVITY

ANALYSIS

RMSE (m)

fc ρ M W P Material LOS
Leap Dyloc

DCS-
RADAR

Proposed

0.10 3 2 23 Brick Yes 1.25 0.59 1.11 0.48

0.45 3 2 23
Concrete
(203mm)

No 1.79 0.82 1.56 0.65

0.10 3 2 34 Brick Yes 1.18 0.37 1.05 0.33

0.45 3 2 34
Concrete
(203mm)

No 1.61 0.76 1.49 0.57

0.10 4 3 23 Brick Yes 1.48 1.04 1.33 0.51
2.4GHz

0.45 4 3 23
Concrete
(203mm)

No 1.95 1.17 1.64 0.94

Avg. 1.54 0.79 1.36 0.58

0.10 3 2 23 Brick Yes 0.72 0.44 0.59 0.15

0.45 3 2 23
Concrete
(203mm)

No 1.85 0.97 1.71 0.69

0.10 3 2 34 Brick Yes 0.35 0.13 0.26 0.08

0.45 3 2 34
Concrete
(203mm)

No 1.29 0.63 1.54 0.47

0.10 4 3 23 Brick Yes 0.89 0.55 0.73 0.17
60GHz

0.45 4 3 23
Concrete
(203mm)

No 2.01 1.02 1.98 0.76

Avg. 1.18 0.62 1.13 0.38

model in the proposed method in frame prediction.

For sensitivity evaluation, we found that the proposed

tracking method can significantly enhance accuracy in several

cases: (1) the high frequency is adopted in wireless commu-

nications; (2) Line-of-Sight (LOS) paths exist between the

anchor and the user in one of the trials; (3) the target user’s

transmission power is strong enough. The performance com-

parison of four techniques with sensitivity analysis is detailed

in Table II. Tracking on the 60GHz-based communications

and LOS path existence can yield an average of Root Mean

Square Error (RMSE) around 0.4m, even with less cooperation

of the anchors. In this case, the high directional signals

contribute to the high accuracy Angle-Delay profile resolution,

particularly the arrival of angle. For the other frequencies (e.g.,

2.4GHz), the average estimation error is around 1m. Note that

the accuracy of the localization for indoor tracking in this work

is significantly lower than the empirical methods or the studies

as reported in [1], [2], [11]. This is because the proposed

method has no help from the ground truth comparison (i.e.,

the anchor cannot get in the building without a suspect of the

target) to refine the results in the tracking step. The refinement

is primarily based on multiple-round-based observation, which

neither of DyLOC/LEAP/DCS-RADAR supports.

The multiple-trial observation can also be applied in specific

tracking missions, e.g., where the targets are supposed to go

in/out of the building several times. Without this mechanism,

compromised access points or building cameras are required to

refine the tracking state. However, we found that averaging the

estimation results from many anchors at different locations can

yield unexpected results. The negative influence likely worsens

if the anchors’ views on the target’s location are so different,

e.g., due to the influence of overlapped arrival of scattering

signals from different orientations. These phenomena often

appear in the testing with thick concrete walls or no LOS

path (Table II).

When the building structure is thick with many concrete

walls (e.g., W = 3), we also found that the RMSE per-
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formance of channel-based approaches such as LEAP and

DCS-RADAR increases rapidly due to noise, particularly for

high carrier frequencies (e.g., fc = 60GHz). By contrast, the

techniques based on the time difference, such as DyLoc and

the proposed method, are less vulnerable to noise (ρ = 0.45)

but highly vulnerable to multipath propagation (affects the

time of phase of arrival). The proposed system can overcome

the multipath propagation by exploiting the averaging from

multiple anchors and thus suffers less RMSE than the other

methods. As shown in Table II, the average RMSE is at

0.38m compared to that of 1.18m, 0.62m, and 1.13m from

LEAP, DyLoc, and DCS-RADAR, respectively. Besides, the

power transmission of the user (e.g., 34dBm) in mmWave

communications also contributes to reducing RMSE in four

models, particularly the proposed technique, given the ease of

determining the angle of arrival if the primary beam can be

detected. Finally, Table II also shows that the user’s estimated

location accuracy can be negatively impacted if there is no

LOS path between the target user and the anchor. For example,

the proposed method suffers an average of 0.15m in RMSE if

a dominant LOS path exists (the first row of the testing with

fc = 60GHz). By contrast, the RMSE soars up to 0.69m if

there is no such LOS path.

Defending against signal-based tracking methods has been

a challenge. Turning off the smartphone and creating well-

designed obstacles in the building can help mitigate signal-

based tracking threats since AoA/TDoA estimation or power

transmission will be weakened. However, the turn-off method

seems impractical since it can interrupt the user’s connectiv-

ity. Another way is to steer main lobe signals into specific

locations of authorized user groups. Still, that signal steering

approach is vulnerable to eavesdropping attacks (e.g., by using

reflectors) if the base station is out of the building (a common

case). Besides, given no general structure for the buildings and

the challenges of obtaining the ground truth data, a possible

extension for this work is to build a calculation model for

finding the best locations to place the anchors where the

tracking can perform best without multiple trials.

V. CONCLUSION

This work presents an efficient signal-based tracking scheme

to follow a specific user in indoor buildings, namely STADAS.

The system can reveal the user trajectory through two deep-

learning models on the channel state information (e.g., AoA,

TDoA) from massive MIMO transmission gained over time.

The simulation results show that the proposed method can

maintain an accuracy of one meter and lower in locating the

target, even knowing nothing about the building structure. We

also found that preventing the risks of illegal surveillance from

this passive tracking without affecting the user communication

experience remains challenging. We believe that addressing

user privacy risks in massive MIMO-based technologies is an

interesting and urgent matter, given their popularity in 5G and

beyond. Then building an affordable defense scheme to protect

users against illegal surveillance is a promising topic in the

future.
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